Neuronale Netze - Grundlagen

Mit Beispielprogrammen in Java

 

Serie

Thomas Kaffka

Datenanalyse & Big Data

Bisher keine Bewertungen
None

+ Buch merken

Lies mit dem Standard- oder Partner-Abo Unterhaltungs­literatur und alle Fachbücher aus unserem Katalog.

Buchbeschreibung zu „Neuronale Netze - Grundlagen“

Von den ersten Modellen bis zum Backpropagation-Netz
Allgemeinverständliche Erläuterungen mit vielen Praxis- und Anwendungsbeispielen
Zahlreiche Programme zum Ausprobieren, Ausführen und Trainieren Neuronaler Netze mit Beispieldaten
Für Programmierer: Vollständige Programmierung eines Backpropagation-Netzes zur Passworterkennung (in Java)



Dieses Buch ist eine grundlegende Einführung in die Entwicklung und Funktionsweise Neuronaler Netze. Sie lernen verschiedene Modelle kennen sowie alle Elemente, die für die Funktionalität Neuronaler Netze von Bedeutung sind. So werden Sie im Detail verstehen, wie diese arbeiten.
Praxisansatz des Buches:

Alle vorgestellten Netze werden beispielhaft anschaulich durchgerechnet. So können Sie nachvollziehen, wie ein Neuronales Netz funktioniert und arbeitet.
Außerdem liefert der Autor zusätzlich zum Buch selbst erstellte Programme, mit denen Sie am PC experimentieren können, indem Sie Beispieldaten eingeben und die jeweiligen Eigenschaften der unterschiedlichen Netze praktisch ausprobieren sowie diese trainieren und ausführen können.

Kaffka beschreibt zunächst die frühesten Modelle Neuronaler Netze sowie die Hebbsche Formel und das von Rosenblatt entwickelte Modell des Perzeptrons. Daraufhin geht er auf die Mustererkennung mit einem Hopfield-Netz ein und erläutert die Grundlagen eines einfachen und eines bidirektionalen Assoziativspeichers.
Schließlich behandelt Kaffka das aktuelle Modell des Backpropagation-Netzes. Sie lernen im Detail, wie ein solches Neuronales Netz funktioniert – von der Netztopologie über die Transferfunktion bis zur Lernformel zum Trainieren eines Netzes.
Darauf aufbauend stellt der Autor verschiedene Beispiele und Anwendungen für Neuronale Netze vor. Hier diskutiert er zusätzlich, wie diese im Rahmen der Regressionsanalyse eingesetzt werden können. Zudem wird gezeigt, dass Neuronale Netze auch drei- oder mehrdimensionale Funktionen erlernen können.
Ein Ausblick zu Expertensystemen im Vergleich zu Neuronalen Netzen rundet die Einführung ab.

Zusatznutzen für Programmierer:

Programmierer, die selber ein neuronales Netz programmieren wollen, finden ein ausführliches Kapitel, in dem ein Backpropagation-Netz vollständig in Java programmiert wird.
Für Programmierer wird der Java-Code aller im Buch verwendeten Programme erläutert.


Downloads zum Buch:

Alle Programme der im Buch beschriebenen Neuronalen Netze zum Ausprobieren
Für Programmierer: Der Quellcode eines vollständigen Backpropagation-Netzes sowie aller im Buch verwendeten Programme


Aus dem Inhalt:

Historische Ansätze:
Hebbsche Formel, Perzeptron, Hopfield-Netz
Neuronale Netze mit der Backpropagation-Technologie
Gewichtsmatix, Training und Lernkurve
Muster-/Bilderkennung
Bidirektionaler Assoziativspeicher
Netztopologie mit bis zu 3 Schichten
Regressionsanalyse
Mehrdimensionale Funktionen
Expertensysteme
Vollständige Programmierung eines Backpropagation-Netzes zur Passworterkennung

Verlag:

MITP

Veröffentlicht:

2017

Druckseiten:

ca. 153


 

Weitere eBooks aus der Serie

Sieh Dir alle Bücher der Serie an

Ähnliche Bücher wie „Neuronale Netze - Grundlagen“

Lies was, wieviel und wo immer Du möchtest!

Teste 30 Tage kostenlos
Netzsieger testet Skoobe